Azure OpenAI
API Keys, Params​
api_key, api_base, api_version etc can be passed directly to litellm.completion
- see here or set as litellm.api_key
params see here
import os
os.environ["AZURE_API_KEY"] = "" # "my-azure-api-key"
os.environ["AZURE_API_BASE"] = "" # "https://example-endpoint.openai.azure.com"
os.environ["AZURE_API_VERSION"] = "" # "2023-05-15"
# optional
os.environ["AZURE_AD_TOKEN"] = ""
os.environ["AZURE_API_TYPE"] = ""
Usage - LiteLLM Python SDK​
Completion - using .env variables​
from litellm import completion
## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""
# azure call
response = completion(
model = "azure/<your_deployment_name>",
messages = [{ "content": "Hello, how are you?","role": "user"}]
)
Completion - using api_key, api_base, api_version​
import litellm
# azure call
response = litellm.completion(
model = "azure/<your deployment name>", # model = azure/<your deployment name>
api_base = "", # azure api base
api_version = "", # azure api version
api_key = "", # azure api key
messages = [{"role": "user", "content": "good morning"}],
)
Completion - using azure_ad_token, api_base, api_version​
import litellm
# azure call
response = litellm.completion(
model = "azure/<your deployment name>", # model = azure/<your deployment name>
api_base = "", # azure api base
api_version = "", # azure api version
azure_ad_token="", # azure_ad_token
messages = [{"role": "user", "content": "good morning"}],
)
Usage - LiteLLM Proxy Server​
Here's how to call Azure OpenAI models with the LiteLLM Proxy Server
1. Save key in your environment​
export AZURE_API_KEY=""
2. Start the proxy​
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
api_key: os.environ/AZURE_API_KEY # The `os.environ/` prefix tells litellm to read this from the env.
3. Test it​
- Curl Request
- OpenAI v1.0.0+
- Langchain
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}
'
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
model = "gpt-3.5-turbo",
temperature=0.1
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
Azure OpenAI Chat Completion Models​
We support ALL Azure models, just set model=azure/<your deployment name>
as a prefix when sending litellm requests
Model Name | Function Call |
---|---|
o1-mini | response = completion(model="azure/<your deployment name>", messages=messages) |
o1-preview | response = completion(model="azure/<your deployment name>", messages=messages) |
gpt-4o-mini | completion('azure/<your deployment name>', messages) |
gpt-4o | completion('azure/<your deployment name>', messages) |
gpt-4 | completion('azure/<your deployment name>', messages) |
gpt-4-0314 | completion('azure/<your deployment name>', messages) |
gpt-4-0613 | completion('azure/<your deployment name>', messages) |
gpt-4-32k | completion('azure/<your deployment name>', messages) |
gpt-4-32k-0314 | completion('azure/<your deployment name>', messages) |
gpt-4-32k-0613 | completion('azure/<your deployment name>', messages) |
gpt-4-1106-preview | completion('azure/<your deployment name>', messages) |
gpt-4-0125-preview | completion('azure/<your deployment name>', messages) |
gpt-3.5-turbo | completion('azure/<your deployment name>', messages) |
gpt-3.5-turbo-0301 | completion('azure/<your deployment name>', messages) |
gpt-3.5-turbo-0613 | completion('azure/<your deployment name>', messages) |
gpt-3.5-turbo-16k | completion('azure/<your deployment name>', messages) |
gpt-3.5-turbo-16k-0613 | completion('azure/<your deployment name>', messages) |
Azure OpenAI Vision Models​
Model Name | Function Call |
---|---|
gpt-4-vision | completion(model="azure/<your deployment name>", messages=messages) |
gpt-4o | completion('azure/<your deployment name>', messages) |
Usage​
import os
from litellm import completion
os.environ["AZURE_API_KEY"] = "your-api-key"
# azure call
response = completion(
model = "azure/<your deployment name>",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What’s in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
}
}
]
}
],
)
Usage - with Azure Vision enhancements​
Note: Azure requires the base_url
to be set with /extensions
Example
base_url=https://gpt-4-vision-resource.openai.azure.com/openai/deployments/gpt-4-vision/extensions
# base_url="{azure_endpoint}/openai/deployments/{azure_deployment}/extensions"
Usage
import os
from litellm import completion
os.environ["AZURE_API_KEY"] = "your-api-key"
# azure call
response = completion(
model="azure/gpt-4-vision",
timeout=5,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Whats in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://avatars.githubusercontent.com/u/29436595?v=4"
},
},
],
}
],
base_url="https://gpt-4-vision-resource.openai.azure.com/openai/deployments/gpt-4-vision/extensions",
api_key=os.getenv("AZURE_VISION_API_KEY"),
enhancements={"ocr": {"enabled": True}, "grounding": {"enabled": True}},
dataSources=[
{
"type": "AzureComputerVision",
"parameters": {
"endpoint": "https://gpt-4-vision-enhancement.cognitiveservices.azure.com/",
"key": os.environ["AZURE_VISION_ENHANCE_KEY"],
},
}
],
)
Azure O1 Models​
Model Name | Function Call |
---|---|
o1-mini | response = completion(model="azure/<your deployment name>", messages=messages) |
o1-preview | response = completion(model="azure/<your deployment name>", messages=messages) |
Set litellm.enable_preview_features = True
to use Azure O1 Models with streaming support.
- SDK
- Proxy
import litellm
litellm.enable_preview_features = True # 👈 KEY CHANGE
response = litellm.completion(
model="azure/<your deployment name>",
messages=[{"role": "user", "content": "What is the weather like in Boston?"}],
stream=True
)
for chunk in response:
print(chunk)
- Setup config.yaml
model_list:
- model_name: o1-mini
litellm_params:
model: azure/o1-mini
api_base: "os.environ/AZURE_API_BASE"
api_key: "os.environ/AZURE_API_KEY"
api_version: "os.environ/AZURE_API_VERSION"
litellm_settings:
enable_preview_features: true # 👈 KEY CHANGE
- Start proxy
litellm --config /path/to/config.yaml
- Test it
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(model="o1-mini", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
stream=True)
for chunk in response:
print(chunk)
Azure Instruct Models​
Use model="azure_text/<your-deployment>"
Model Name | Function Call |
---|---|
gpt-3.5-turbo-instruct | response = completion(model="azure_text/<your deployment name>", messages=messages) |
gpt-3.5-turbo-instruct-0914 | response = completion(model="azure_text/<your deployment name>", messages=messages) |
import litellm
## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""
response = litellm.completion(
model="azure_text/<your-deployment-name",
messages=[{"role": "user", "content": "What is the weather like in Boston?"}]
)
print(response)
Azure Text to Speech (tts)​
LiteLLM PROXY
- model_name: azure/tts-1
litellm_params:
model: azure/tts-1
api_base: "os.environ/AZURE_API_BASE_TTS"
api_key: "os.environ/AZURE_API_KEY_TTS"
api_version: "os.environ/AZURE_API_VERSION"
LiteLLM SDK
from litellm import completion
## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""
# azure call
speech_file_path = Path(__file__).parent / "speech.mp3"
response = speech(
model="azure/<your-deployment-name",
voice="alloy",
input="the quick brown fox jumped over the lazy dogs",
)
response.stream_to_file(speech_file_path)
Authentication​
Entrata ID - use azure_ad_token
​
This is a walkthrough on how to use Azure Active Directory Tokens - Microsoft Entra ID to make litellm.completion()
calls
Step 1 - Download Azure CLI Installation instructons: https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
brew update && brew install azure-cli
Step 2 - Sign in using az
az login --output table
Step 3 - Generate azure ad token
az account get-access-token --resource https://cognitiveservices.azure.com
In this step you should see an accessToken
generated
{
"accessToken": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6IjlHbW55RlBraGMzaE91UjIybXZTdmduTG83WSIsImtpZCI6IjlHbW55RlBraGMzaE91UjIybXZTdmduTG83WSJ9",
"expiresOn": "2023-11-14 15:50:46.000000",
"expires_on": 1700005846,
"subscription": "db38de1f-4bb3..",
"tenant": "bdfd79b3-8401-47..",
"tokenType": "Bearer"
}
Step 4 - Make litellm.completion call with Azure AD token
Set azure_ad_token
= accessToken
from step 3 or set os.environ['AZURE_AD_TOKEN']
- SDK
- PROXY config.yaml
response = litellm.completion(
model = "azure/<your deployment name>", # model = azure/<your deployment name>
api_base = "", # azure api base
api_version = "", # azure api version
azure_ad_token="", # your accessToken from step 3
messages = [{"role": "user", "content": "good morning"}],
)
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
azure_ad_token: os.environ/AZURE_AD_TOKEN
Entrata ID - use tenant_id, client_id, client_secret​
Here is an example of setting up tenant_id
, client_id
, client_secret
in your litellm proxy config.yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
tenant_id: os.environ/AZURE_TENANT_ID
client_id: os.environ/AZURE_CLIENT_ID
client_secret: os.environ/AZURE_CLIENT_SECRET
Test it
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}
'
Example video of using tenant_id
, client_id
, client_secret
with LiteLLM Proxy Server
Azure AD Token Refresh - DefaultAzureCredential
​
Use this if you want to use Azure DefaultAzureCredential
for Authentication on your requests
- SDK
- PROXY config.yaml
from litellm import completion
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
token_provider = get_bearer_token_provider(DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")
response = completion(
model = "azure/<your deployment name>", # model = azure/<your deployment name>
api_base = "", # azure api base
api_version = "", # azure api version
azure_ad_token_provider=token_provider
messages = [{"role": "user", "content": "good morning"}],
)
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/your-deployment-name
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
litellm_settings:
enable_azure_ad_token_refresh: true # 👈 KEY CHANGE
Azure Batches API​
Property | Details |
---|---|
Description | Azure OpenAI Batches API |
custom_llm_provider on LiteLLM | azure/ |
Supported Operations | /v1/batches , /v1/files |
Azure OpenAI Batches API | Azure OpenAI Batches API ↗ |
Cost Tracking, Logging Support | ✅ LiteLLM will log, track cost for Batch API Requests |
Quick Start​
Just add the azure env vars to your environment.
export AZURE_API_KEY=""
export AZURE_API_BASE=""
- LiteLLM PROXY Server
- LiteLLM SDK
1. Upload a File
- OpenAI Python SDK
- Curl
from openai import OpenAI
# Initialize the client
client = OpenAI(
base_url="http://localhost:4000",
api_key="your-api-key"
)
batch_input_file = client.files.create(
file=open("mydata.jsonl", "rb"),
purpose="batch",
extra_body={"custom_llm_provider": "azure"}
)
file_id = batch_input_file.id
curl http://localhost:4000/v1/files \
-H "Authorization: Bearer sk-1234" \
-F purpose="batch" \
-F file="@mydata.jsonl"
Example File Format
{"custom_id": "task-0", "method": "POST", "url": "/chat/completions", "body": {"model": "REPLACE-WITH-MODEL-DEPLOYMENT-NAME", "messages": [{"role": "system", "content": "You are an AI assistant that helps people find information."}, {"role": "user", "content": "When was Microsoft founded?"}]}}
{"custom_id": "task-1", "method": "POST", "url": "/chat/completions", "body": {"model": "REPLACE-WITH-MODEL-DEPLOYMENT-NAME", "messages": [{"role": "system", "content": "You are an AI assistant that helps people find information."}, {"role": "user", "content": "When was the first XBOX released?"}]}}
{"custom_id": "task-2", "method": "POST", "url": "/chat/completions", "body": {"model": "REPLACE-WITH-MODEL-DEPLOYMENT-NAME", "messages": [{"role": "system", "content": "You are an AI assistant that helps people find information."}, {"role": "user", "content": "What is Altair Basic?"}]}}
2. Create a Batch Request
- OpenAI Python SDK
- Curl
batch = client.batches.create( # re use client from above
input_file_id=file_id,
endpoint="/v1/chat/completions",
completion_window="24h",
metadata={"description": "My batch job"},
extra_body={"custom_llm_provider": "azure"}
)
curl http://localhost:4000/v1/batches \
-H "Authorization: Bearer $LITELLM_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"input_file_id": "file-abc123",
"endpoint": "/v1/chat/completions",
"completion_window": "24h"
}'
3. Retrieve a Batch
- OpenAI Python SDK
- Curl
retrieved_batch = client.batches.retrieve(
batch.id,
extra_body={"custom_llm_provider": "azure"}
)
curl http://localhost:4000/v1/batches/batch_abc123 \
-H "Authorization: Bearer $LITELLM_API_KEY" \
-H "Content-Type: application/json" \
4. Cancel a Batch
- OpenAI Python SDK
- Curl
cancelled_batch = client.batches.cancel(
batch.id,
extra_body={"custom_llm_provider": "azure"}
)
curl http://localhost:4000/v1/batches/batch_abc123/cancel \
-H "Authorization: Bearer $LITELLM_API_KEY" \
-H "Content-Type: application/json" \
-X POST
5. List Batches
- OpenAI Python SDK
- Curl
client.batches.list(extra_body={"custom_llm_provider": "azure"})
curl http://localhost:4000/v1/batches?limit=2 \
-H "Authorization: Bearer $LITELLM_API_KEY" \
-H "Content-Type: application/json"
1. Create File for Batch Completion
from litellm
import os
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
file_name = "azure_batch_completions.jsonl"
_current_dir = os.path.dirname(os.path.abspath(__file__))
file_path = os.path.join(_current_dir, file_name)
file_obj = await litellm.acreate_file(
file=open(file_path, "rb"),
purpose="batch",
custom_llm_provider="azure",
)
print("Response from creating file=", file_obj)
2. Create Batch Request
create_batch_response = await litellm.acreate_batch(
completion_window="24h",
endpoint="/v1/chat/completions",
input_file_id=batch_input_file_id,
custom_llm_provider="azure",
metadata={"key1": "value1", "key2": "value2"},
)
print("response from litellm.create_batch=", create_batch_response)
3. Retrieve Batch and File Content
retrieved_batch = await litellm.aretrieve_batch(
batch_id=create_batch_response.id,
custom_llm_provider="azure"
)
print("retrieved batch=", retrieved_batch)
# Get file content
file_content = await litellm.afile_content(
file_id=batch_input_file_id,
custom_llm_provider="azure"
)
print("file content = ", file_content)
4. List Batches
list_batches_response = litellm.list_batches(
custom_llm_provider="azure",
limit=2
)
print("list_batches_response=", list_batches_response)
Health Check Azure Batch models​
[BETA] Loadbalance Multiple Azure Deployments​
In your config.yaml, set enable_loadbalancing_on_batch_endpoints: true
model_list:
- model_name: "batch-gpt-4o-mini"
litellm_params:
model: "azure/gpt-4o-mini"
api_key: os.environ/AZURE_API_KEY
api_base: os.environ/AZURE_API_BASE
model_info:
mode: batch
litellm_settings:
enable_loadbalancing_on_batch_endpoints: true # 👈 KEY CHANGE
Note: This works on {PROXY_BASE_URL}/v1/files
and {PROXY_BASE_URL}/v1/batches
.
Note: Response is in the OpenAI-format.
- Upload a file
Just set model: batch-gpt-4o-mini
in your .jsonl.
curl http://localhost:4000/v1/files \
-H "Authorization: Bearer sk-1234" \
-F purpose="batch" \
-F file="@mydata.jsonl"
Example File
Note: model
should be your azure deployment name.
{"custom_id": "task-0", "method": "POST", "url": "/chat/completions", "body": {"model": "batch-gpt-4o-mini", "messages": [{"role": "system", "content": "You are an AI assistant that helps people find information."}, {"role": "user", "content": "When was Microsoft founded?"}]}}
{"custom_id": "task-1", "method": "POST", "url": "/chat/completions", "body": {"model": "batch-gpt-4o-mini", "messages": [{"role": "system", "content": "You are an AI assistant that helps people find information."}, {"role": "user", "content": "When was the first XBOX released?"}]}}
{"custom_id": "task-2", "method": "POST", "url": "/chat/completions", "body": {"model": "batch-gpt-4o-mini", "messages": [{"role": "system", "content": "You are an AI assistant that helps people find information."}, {"role": "user", "content": "What is Altair Basic?"}]}}
Expected Response (OpenAI-compatible)
{"id":"file-f0be81f654454113a922da60acb0eea6",...}
- Create a batch
curl http://0.0.0.0:4000/v1/batches \
-H "Authorization: Bearer $LITELLM_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"input_file_id": "file-f0be81f654454113a922da60acb0eea6",
"endpoint": "/v1/chat/completions",
"completion_window": "24h",
"model: "batch-gpt-4o-mini"
}'
Expected Response:
{"id":"batch_94e43f0a-d805-477d-adf9-bbb9c50910ed",...}
- Retrieve a batch
curl http://0.0.0.0:4000/v1/batches/batch_94e43f0a-d805-477d-adf9-bbb9c50910ed \
-H "Authorization: Bearer $LITELLM_API_KEY" \
-H "Content-Type: application/json" \
Expected Response:
{"id":"batch_94e43f0a-d805-477d-adf9-bbb9c50910ed",...}
- List batch
curl http://0.0.0.0:4000/v1/batches?limit=2 \
-H "Authorization: Bearer $LITELLM_API_KEY" \
-H "Content-Type: application/json"
Expected Response:
{"data":[{"id":"batch_R3V...}
Advanced​
Azure API Load-Balancing​
Use this if you're trying to load-balance across multiple Azure/OpenAI deployments.
Router
prevents failed requests, by picking the deployment which is below rate-limit and has the least amount of tokens used.
In production, Router connects to a Redis Cache to track usage across multiple deployments.
Quick Start​
pip install litellm
from litellm import Router
model_list = [{ # list of model deployments
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
}, {
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
}, {
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
}]
router = Router(model_list=model_list)
# openai.chat.completions.create replacement
response = router.completion(model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}]
print(response)
Redis Queue​
router = Router(model_list=model_list,
redis_host=os.getenv("REDIS_HOST"),
redis_password=os.getenv("REDIS_PASSWORD"),
redis_port=os.getenv("REDIS_PORT"))
print(response)
Parallel Function calling​
See a detailed walthrough of parallel function calling with litellm here
# set Azure env variables
import os
os.environ['AZURE_API_KEY'] = "" # litellm reads AZURE_API_KEY from .env and sends the request
os.environ['AZURE_API_BASE'] = "https://openai-gpt-4-test-v-1.openai.azure.com/"
os.environ['AZURE_API_VERSION'] = "2023-07-01-preview"
import litellm
import json
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})
## Step 1: send the conversation and available functions to the model
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model="azure/chatgpt-functioncalling", # model = azure/<your-azure-deployment-name>
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("\nLLM Response1:\n", response)
response_message = response.choices[0].message
tool_calls = response.choices[0].message.tool_calls
print("\nTool Choice:\n", tool_calls)
Spend Tracking for Azure OpenAI Models (PROXY)​
Set base model for cost tracking azure image-gen call
Image Generation​
model_list:
- model_name: dall-e-3
litellm_params:
model: azure/dall-e-3-test
api_version: 2023-06-01-preview
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_key: os.environ/AZURE_API_KEY
base_model: dall-e-3 # 👈 set dall-e-3 as base model
model_info:
mode: image_generation
Chat Completions / Embeddings​
Problem: Azure returns gpt-4
in the response when azure/gpt-4-1106-preview
is used. This leads to inaccurate cost tracking
Solution ✅ : Set base_model
on your config so litellm uses the correct model for calculating azure cost
Get the base model name from here
Example config with base_model
model_list:
- model_name: azure-gpt-3.5
litellm_params:
model: azure/chatgpt-v-2
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: "2023-07-01-preview"
model_info:
base_model: azure/gpt-4-1106-preview